Your search

In authors or contributors
  • In this perspective article, we show that a morphospace, based on information-theoretic measures, can be a useful construct for comparing biological agents with artificial intelligence (AI) systems. The axes of this space label three kinds of complexity: (i) autonomic, (ii) computational and (iii) social complexity. On this space, we map biological agents such as bacteria, bees, C. elegans, primates and humans; as well as AI technologies such as deep neural networks, multi-agent bots, social robots, Siri and Watson. A complexity-based conceptualization provides a useful framework for identifying defining features and classes of conscious and intelligent systems. Starting with cognitive and clinical metrics of consciousness that assess awareness and wakefulness, we ask how AI and synthetically engineered life-forms would measure on homologous metrics. We argue that awareness and wakefulness stem from computational and autonomic complexity. Furthermore, tapping insights from cognitive robotics, we examine the functional role of consciousness in the context of evolutionary games. This points to a third kind of complexity for describing consciousness, namely, social complexity. Based on these metrics, our morphospace suggests the possibility of additional types of consciousness other than biological; namely, synthetic, group-based and simulated. This space provides a common conceptual framework for comparing traits and highlighting design principles of minds and machines.

  • Reviewing recent closely related developments at the crossroads of biomedical engineering, artificial intelligence and biomimetic technology, in this paper, we attempt to distinguish phenomenological consciousness into three categories based on embodiment: one that is embodied by biological agents, another by artificial agents and a third that results from collective phenomena in complex dynamical systems. Though this distinction by itself is not new, such a classification is useful for understanding differences in design principles and technology necessary to engineer conscious machines. It also allows one to zero-in on minimal features of phenomenological consciousness in one domain and map on to their counterparts in another. For instance, awareness and metabolic arousal are used as clinical measures to assess levels of consciousness in patients in coma or in a vegetative state. We discuss analogous abstractions of these measures relevant to artificial systems and their manifestations. This is particularly relevant in the light of recent developments in deep learning and artificial life.

Last update from database: 3/23/25, 8:36 AM (UTC)