Your search

In authors or contributors
  • The prospect of artificial consciousness raises theoretical, technical and ethical challenges which converge on the core issue of how to eventually identify and characterize it. In order to provide an answer to this question, I propose to start from a theoretical reflection about the meaning and main characteristics of consciousness. On the basis of this conceptual clarification it is then possible to think about relevant empirical indicators (i.e. features that facilitate the attribution of consciousness to the system considered) and identify key ethical implications that arise. In this chapter, I further elaborate previous work on the topic, presenting a list of candidate indicators of consciousness in artificial systems and introducing an ethical reflection about their potential implications. Specifically, I focus on two main ethical issues: the conditions for considering an artificial system as a moral subject; and the need for a non-anthropocentric approach in reflecting about the science and the ethics of artificial consciousness.

  • We here analyse the question of developing artificial consciousness from an evolutionary perspective, taking the evolution of the human brain and its relation with consciousness as a reference model or as a benchmark. This kind of analysis reveals several structural and functional features of the human brain that appear to be key for reaching human-like complex conscious experience and that current research on Artificial Intelligence (AI) should take into account in its attempt to develop systems capable of human-like conscious processing. We argue that, even if AI is limited in its ability to emulate human consciousness for both intrinsic (i.e., structural and architectural) and extrinsic (i.e., related to the current stage of scientific and technological knowledge) reasons, taking inspiration from those characteristics of the brain that make human-like conscious processing possible and/or modulate it, is a potentially promising strategy towards developing conscious AI. Also, it cannot be theoretically excluded that AI research can develop partial or potentially alternative forms of consciousness that are qualitatively different from the human form, and that may be either more or less sophisticated depending on the perspectives. Therefore, we recommend neuroscience-inspired caution in talking about artificial consciousness: since the use of the same word “consciousness” for humans and AI becomes ambiguous and potentially misleading, we propose to clearly specify which level and/or type of consciousness AI research aims to develop, as well as what would be common versus differ in AI conscious processing compared to human conscious experience.

  • In today’s society, it becomes increasingly important to assess which non-human and non-verbal beings possess consciousness. This review article aims to delineate criteria for consciousness especially in animals, while also taking into account intelligent artifacts. First, we circumscribe what we mean with “consciousness” and describe key features of subjective experience: qualitative richness, situatedness, intentionality and interpretation, integration and the combination of dynamic and stabilizing properties. We argue that consciousness has a biological function, which is to present the subject with a multimodal, situational survey of the surrounding world and body, subserving complex decision-making and goal-directed behavior. This survey reflects the brain’s capacity for internal modeling of external events underlying changes in sensory state. Next, we follow an inside-out approach: how can the features of conscious experience, correlating to mechanisms inside the brain, be logically coupled to externally observable (“outside”) properties? Instead of proposing criteria that would each define a “hard” threshold for consciousness, we outline six indicators: (i) goal-directed behavior and modelbased learning; (ii) anatomic and physiological substrates for generating integrative multimodal representations; (iii) psychometrics and meta-cognition; (iv) episodic memory; (v) susceptibility to illusions and multistable perception; and (vi) specific visuospatial behaviors. Rather than emphasizing a particular indicator as being decisive, we propose that the consistency amongst these indicators can serve to assess consciousness in particular species. The integration of scores on the various indicators yields an overall, graded criterion for consciousness, somewhat comparable to the Glasgow Coma Scale for unresponsive patients. When considering theoretically derived measures of consciousness, it is argued that their validity should not be assessed on the basis of a single quantifiable measure, but requires cross-examination across multiple pieces of evidence, including the indicators proposed here. Current intelligent machines, including deep learning neural networks (DLNNs) and agile robots, are not indicated to be conscious yet. Instead of assessing machine consciousness by a brief Turing-type of test, evidence for it may gradually accumulate when we study machines ethologically and across time, considering multiple behaviors that require flexibility, improvisation, spontaneous problem-solving and the situational conspectus typically associated with conscious experience.

  • Is artificial consciousness theoretically possible? Is it plausible? If so, is it technically feasible? To make progress on these questions, it is necessary to lay some groundwork clarifying the logical and empirical conditions for artificial consciousness to arise and the meaning of relevant terms involved. Consciousness is a polysemic word: researchers from different fields, including neuroscience, Artificial Intelligence, robotics, and philosophy, among others, sometimes use different terms in order to refer to the same phenomena or the same terms to refer to different phenomena. In fact, if we want to pursue artificial consciousness, a proper definition of the key concepts is required. Here, after some logical and conceptual preliminaries, we argue for the necessity of using dimensions and profiles of consciousness for a balanced discussion about their possible instantiation or realisation in artificial systems. Our primary goal in this paper is to review the main theoretical questions that arise in the domain of artificial consciousness. On the basis of this review, we propose to assess the issue of artificial consciousness within a multidimensional account. The theoretical possibility of artificial consciousness is already presumed within some theoretical frameworks; however, empirical possibility cannot simply be deduced from these frameworks but needs independent empirical validation. Analysing the complexity of consciousness we here identify constituents and related components/dimensions, and within this analytic approach reflect pragmatically about the general challenges that the creation of artificial consciousness confronts. Our aim is not to demonstrate conclusively either the theoretical plausibility or the empirical feasibility of artificial consciousness, but to outline a research strategy in which we propose that "awareness" may be a potentially realistic target for realisation in artificial systems.

Last update from database: 3/23/25, 8:36 AM (UTC)