Your search
Results 3 resources
-
Abstract Technological advances raise new puzzles and challenges for cognitive science and the study of how humans think about and interact with artificial intelligence (AI). For example, the advent of large language models and their human-like linguistic abilities has raised substantial debate regarding whether or not AI could be conscious. Here, we consider the question of whether AI could have subjective experiences such as feelings and sensations (‘phenomenal consciousness’). While experts from many fields have weighed in on this issue in academic and public discourse, it remains unknown whether and how the general population attributes phenomenal consciousness to AI. We surveyed a sample of US residents (n = 300) and found that a majority of participants were willing to attribute some possibility of phenomenal consciousness to large language models. These attributions were robust, as they predicted attributions of mental states typically associated with phenomenality—but also flexible, as they were sensitive to individual differences such as usage frequency. Overall, these results show how folk intuitions about AI consciousness can diverge from expert intuitions—with potential implications for the legal and ethical status of AI.
-
Which systems/organisms are conscious? New tests for consciousness (‘C-tests’) are urgently needed. There is persisting uncertainty about when consciousness arises in human development, when it is lost due to neurological disorders and brain injury, and how it is distributed in nonhuman species. This need is amplified by recent and rapid developments in artificial intelligence (AI), neural organoids, and xenobot technology. Although a number of C-tests have been proposed in recent years, most are of limited use, and currently we have no C-tests for many of the populations for which they are most critical. Here, we identify challenges facing any attempt to develop C-tests, propose a multidimensional classification of such tests, and identify strategies that might be used to validate them.
-
Whether current or near-term AI systems could be conscious is a topic of scientific interest and increasing public concern. This report argues for, and exemplifies, a rigorous and empirically grounded approach to AI consciousness: assessing existing AI systems in detail, in light of our best-supported neuroscientific theories of consciousness. We survey several prominent scientific theories of consciousness, including recurrent processing theory, global workspace theory, higher-order theories, predictive processing, and attention schema theory. From these theories we derive "indicator properties" of consciousness, elucidated in computational terms that allow us to assess AI systems for these properties. We use these indicator properties to assess several recent AI systems, and we discuss how future systems might implement them. Our analysis suggests that no current AI systems are conscious, but also suggests that there are no obvious technical barriers to building AI systems which satisfy these indicators.