Your search
Results 3 resources
-
This study proposes a model of computational consciousness for non-interacting agents. The phenomenon of interest was assumed as sequentially dependent on the cognitive tasks of sensation, perception, emotion, affection, attention, awareness, and consciousness. Starting from the Smart Sensing prodromal study, the cognitive layers associated with the processes of attention, awareness, and consciousness were formally defined and tested together with the other processes concerning sensation, perception, emotion, and affection. The output of the model consists of an index that synthesizes the energetic and entropic contributions of consciousness from a computationally moral perspective. Attention was modeled through a bottom-up approach, while awareness and consciousness by distinguishing environment from subjective cognitive processes. By testing the solution on visual stimuli eliciting the emotions of happiness, anger, fear, surprise, contempt, sadness, disgust, and the neutral state, it was found that the proposed model is concordant with the scientific evidence concerning covert attention. Comparable results were also obtained regarding studies investigating awareness as a consequence of visual stimuli repetition, as well as those investigating moral judgments to visual stimuli eliciting disgust and sadness. The solution represents a novel approach for defining computational consciousness through artificial emotional activity and morality.
-
This study explores an info-structural model of cognition for non-interacting agents affected by human sensation, perception, emotion, and affection. We do not analyze the neuroscientific or psychological debate concerning the human mind working, but we underline the importance of modeling the above cognitive levels when designing artificial intelligence agents. Our aim was to start a reflection on the computational reproduction of intelligence, providing a methodological approach through which the aforementioned human factors in autonomous systems are enhanced. The presented model must be intended as part of a larger one, which also includes concepts of attention, awareness, and consciousness. Experiments have been performed by providing visual stimuli to the proposed model, coupling the emotion cognitive level with a supervised learner to produce artificial emotional activity. For this purpose, performances with Random Forest and XGBoost have been compared and, with the latter algorithm, 85% accuracy and 92% coherency over predefined emotional episodes have been achieved. The model has also been tested on emotional episodes that are different from those related to the training phase, and a decrease in accuracy and coherency has been observed. Furthermore, by decreasing the weight related to the emotion cognitive instances, the model reaches the same performances recorded during the evaluation phase. In general, the framework achieves a first emotional generalization responsiveness of 94% and presents an approximately constant relative frequency related to the agent’s displayed emotions.
-
Foundation models are gaining considerable interest for their capacity of solving many downstream tasks without fine-tuning parameters on specific datasets. The same solutions can connect visual and linguistic representations through image-text contrastive learning. These abilities allow an artificial agent to act similarly to a human, but significant cognitive processes still need to be introduced in the learning process. The present study proposes an advancement to more human-like artificial intelligence by introducing CognitiveNet, a learnable architecture integrating foundation models. Starting from the latest studies in the field of Artificial Consciousness, a hierarchy of cognitive layers has been modeled and pre-trained for estimating the emotional content of images. By employing CLIP as the backbone model, significant concordant emotional activity was produced. Furthermore, the proposed model overcomes the accuracy of CLIP in classifying CIFAR-10 and -100 datasets through supervised optimization, suggesting CognitiveNet as a promising solution for solving classification tasks through online meta-learning.