Your search

In authors or contributors
  • In developing a humanoid robot, there are two major objectives. One is developing a physical robot having body, hands, and feet resembling those of human beings and being able to similarly control them. The other is to develop a control system that works similarly to our brain, to feel, think, act, and learn like ours. In this article, an architecture of a control system with a brain-oriented logical structure for the second objective is proposed. The proposed system autonomously adapts to the environment and implements a clearly defined “consciousness” function, through which both habitual behavior and goal-directed behavior are realized. Consciousness is regarded as a function for effective adaptation at the system-level, based on matching and organizing the individual results of the underlying parallel-processing units. This consciousness is assumed to correspond to how our mind is “aware” when making our moment to moment decisions in our daily life. The binding problem and the basic causes of delay in Libet’s experiment are also explained by capturing awareness in this manner. The goal is set as an image in the system, and efficient actions toward achieving this goal are selected in the goal-directed behavior process. The system is designed as an artificial neural network and aims at achieving consistent and efficient system behavior, through the interaction of highly independent neural nodes. The proposed architecture is based on a two-level design. The first level, which we call the “basic-system,” is an artificial neural network system that realizes consciousness, habitual behavior and explains the binding problem. The second level, which we call the “extended-system,” is an artificial neural network system that realizes goal-directed behavior.

  • A basic structure and behavior of a human-like AI system with conscious like functions is proposed. The system is constructed completely with artificial neural networks (ANN), and an optimal-design approach is applied. The proposed system using recurrent neural networks (RNN) which execute learning under dynamic equilibrium is a redesign of ANN in the previous system. The redesign using the RNNs allows the proposed brain-like autonomous adaptive system to be more plausible as a macroscopic model of the brain. By hypothesizing that the “conscious sensation” that constitutes the basis for phenomenal consciousness, is the same as “state of system level learning”, we can clearly explain consciousness from an information system perspective. This hypothesis can also comprehensively explain recurrent processing theory (RPT) and the global neuronal workspace theory (GNWT) of consciousness. The proposed structure and behavior are simple but scalable by design, and can be expanded to reproduce more complex features of the brain, leading to the realization of an AI system with functions equivalent to human-like consciousness.

Last update from database: 3/23/25, 8:36 AM (UTC)